топология - translation to English
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

топология - translation to English

РАЗДЕЛ МАТЕМАТИКИ, ИЗУЧАЮЩИЙ ЯВЛЕНИЕ НЕПРЕРЫВНОСТИ И СВОЙСТВА НЕКОТОРЫХ ПРОСТРАНСТВ
Геометрия непрерывности; Резиновая геометрия
  • 240x240пкс
  • 240x240пкс

топология         
f.
topology
окрестность         
  • плоскости]] подмножество <math>V</math> является окрестностью точки <math>p</math>, если вокруг точки можно нарисовать небольшой диск, который будет целиком содержаться в <math>V</math>.
  • Прямоугольник не может являться окрестностью своих вершин.
Выколотая окрестность; Окрестность точки; Окрестность (топология); Проколотая окрестность; Окрестности
окрестность         
  • плоскости]] подмножество <math>V</math> является окрестностью точки <math>p</math>, если вокруг точки можно нарисовать небольшой диск, который будет целиком содержаться в <math>V</math>.
  • Прямоугольник не может являться окрестностью своих вершин.
Выколотая окрестность; Окрестность точки; Окрестность (топология); Проколотая окрестность; Окрестности
f.
neighborhood, vicinity

Definition

ТОПОЛОГИЯ
раздел математики, занимающийся изучением свойств фигур (или пространств), которые сохраняются при непрерывных деформациях, таких, например, как растяжение, сжатие или изгибание. Непрерывная деформация - это деформация фигуры, при которой не происходит разрывов (т.е. нарушения целостности фигуры) или склеиваний (т.е. отождествления ее точек). Такие геометрические свойства связаны с положением, а не с формой или величиной фигуры. В отличие от евклидовой и римановой геометрий, геометрии Лобачевского и других геометрий, занимающихся измерением длин и углов, топология имеет неметрический и качественный характер. Раньше она носила названия "анализ ситус" (анализ положения), а также "теория точечных множеств". В научно-популярной литературе топологию часто называют "геометрией на резиновом листе", поскольку ее наглядно можно представлять себе как геометрию фигур, нарисованных на идеально упругих резиновых листах, которые подвергаются растяжению, сжатию или изгибанию. Топология - один из новейших разделов математики.
История. В 1640 французский математик Р.Декарт (1596-1650) нашел инвариантное соотношение между числом вершин, ребер и граней простых многогранников. Это соотношение Декарт выразил формулой V - E + F = 2, где V - число вершин, E - число ребер и F - число граней. В 1752 швейцарский математик Л.Эйлер (1707-1783) дал строгое доказательство этой формулы. Еще один вклад Эйлера в развитие топологии - это решение знаменитой задачи о кёнигсбергских мостах. Речь шла об острове на реке Прегель в Кёнигсберге (в том месте, где река разделяется на два рукава - Старый и Новый Прегель) и семи мостах, соединяющих остров с берегами. Задача состояла в том, чтобы выяснить, можно ли обойти все семь мостов по непрерывному маршруту, побывав на каждом только один раз и вернувшись в исходную точку. Эйлер заменил участки суши точками, а мосты - линиями. Полученную конфигурацию Эйлер назвал графом, точки - его вершинами, а линии - ребрами. Вершины он разделил на четные и нечетные в зависимости от того, четное или нечетное число ребер выходит из вершины. Эйлер показал, что все ребра графа можно обойти ровна по одному разу по непрерывному замкнутому маршруту, лишь если граф содержит только четные вершины. Так как граф в задаче о кёнигсбергских мостах содержит только нечетные вершины, мосты невозможно обойти по непрерывному маршруту, побывав на каждом ровно по одному разу и вернувшись к началу маршрута.
Предложенное Эйлером решение задачи о кенигсбергских мостах зависит только от взаимного расположения мостов. Оно положило формальное начало топологии как разделу математики. К.Гаусс (1777-1855) создал теорию узлов, которой позднее занимались И.Листинг (1808-1882), П.Тэйт (1831-1901) и Дж.Александер. В 1840 А.Мёбиус (1790-1868) сформулировал так называемую проблему четырех красок, которую впоследствии исследовали О.де Морган (1806-1871) и А.Кэли (1821-1895). Первым систематическим трудом по топологии были Предварительные исследования по топологии Листинга (1874).
Основателями современной топологии являются Г.Кантор (1845-1918), А.Пуанкаре (1854-1912) и Л.Брауэр (1881-1966).
Разделы топологии. Топологию можно подразделить на три области: 1) комбинаторную топологию, изучающую геометрические формы посредством их разбиения на простейшие фигуры, регулярным образом примыкающие друг к другу; 2) алгебраическую топологию, занимающуюся изучением алгебраических структур, связанных с топологическими пространствами, с упором на теорию групп; 3) теоретико-множественную топологию, изучающую множества как скопления точек (в отличие от комбинаторных методов, представляющих объект как объединение более простых объектов) и описывающую множества в терминах таких топологических свойств, как открытость, замкнутость, связность и т.д. Разумеется, такое деление топологии на области в чем-то произвольно; многие топологи предпочитают выделять в ней другие разделы.
Некоторые основные понятия. Топологическое пространство состоит из множества точек S и набора . подмножеств множества S, удовлетворяющего следующим аксиомам:
(1) все множество S и пустое множество принадлежат набору ?;
(2) объединение любой совокупности множеств из . есть множество из ?;
(3) пересечение любого конечного числа множеств из . есть множество из ?.
Множества, входящие в набор ?, называются открытыми множествами, а сам этот набор - топологией в S. См. МНОЖЕСТВ ТЕОРИЯ
.
Топологическое преобразование, или гомеоморфизм, одной геометрической фигуры S на другую, S?, - это отображение (p . p?) точек p из S в точки p. из S?, удовлетворяющее следующим условиям: 1) устанавливаемое им соответствие между точками из S и S. взаимно однозначно, т.е. каждой точке p из S соответствует только одна точка p. из S. и в каждую точку p. отображается только одна точка p; 2) отображение взаимно непрерывно (непрерывно в обе стороны), т.е. если заданы две точки p, q из S и точка p движется так, что расстояние между ней и точкой q стремится к нулю, то расстояние между соответствующими точками p?, q. из S. также стремится к нулю, и наоборот.
Геометрические фигуры, переходящие одна в другую при топологических преобразованиях, называются гомеоморфными. Окружность и граница квадрата гомеоморфны, так как их можно перевести друг в друга топологическим преобразованием (т.е. изгибанием и растяжением без разрывов и склеиваний, например, растяжением границы квадрата на описанную вокруг него окружность). Сфера и поверхность куба также гомеоморфны. Чтобы доказать гомеоморфность фигур, достаточно указать соответствующее преобразование, но тот факт, что для каких-то фигур найти преобразование нам не удается, не доказывает, что эти фигуры не гомеоморфны. Здесь помогают топологические свойства.
Топологическим свойством (или топологическим инвариантом) геометрических фигур называется свойство, которым вместе с данной фигурой обладает также любая фигура, в которую она переходит при топологическом преобразовании.
Любое открытое связное множество, содержащее по крайней мере одну точку, называется областью.
Область, в которой любую замкнутую простую (т.е. гомеоморфную окружности) кривую можно стянуть в точку, оставаясь все время в этой области, называется односвязной, а соответствующее свойство области - односвязностью. Если же некоторую замкнутую простую кривую этой области нельзя стянуть в точку, оставаясь все время в этой области, то область называется многосвязной, а соответствующее свойство области - многосвязностью. Представьте себе две круговые области, или диски, одну без дыр, а другую с дырами. Первая область односвязна, вторая многосвязна. Односвязность и многосвязность - топологические свойства. Область с дырой не может перейти при гомеоморфизме в область без дыр. Интересно отметить, что если в многосвязном диске провести по разрезу от каждой из дыр до края диска, то он станет односвязным.
Максимальное число замкнутых простых непересекающихся кривых, по которым можно разрезать замкнутую поверхность, не разделяя ее на отдельные части, называется родом поверхности. Род - топологический инвариант поверхности. Можно доказать, что род сферы равен нулю, род тора (поверхности "бублика") - единице, род кренделя (тора с двумя дырками) - двум, род поверхности с p дырами равен p. Отсюда следует, что ни поверхность куба, ни сфера не гомеоморфны тору.
Среди топологических инвариантов поверхности можно также отметить число сторон и число краев. Диск имеет 2 стороны, 1 край и род 0. Тор имеет 2 стороны, не имеет краев, а его род равен 1.
Введенные выше понятия позволяют уточнить определение топологии: топологией называется раздел математики, изучающий свойства, которые сохраняются при гомеоморфизмах.
Важные проблемы и результаты. Теорема Жордана о замкнутой кривой. Если на поверхности проведена простая замкнутая кривая, то существует ли какое-либо свойство кривой, которое сохраняется при деформации поверхности. Существование такого свойства вытекает из следующей теоремы: простая замкнутая кривая на плоскости делит плоскость на две области, внутреннюю и внешнюю. Эта кажущаяся тривиальной теорема очевидна для кривых простого вида, например, для окружности; однако для сложных замкнутых ломаных дело обстоит иначе. Теорема была впервые сформулирована и доказана К.Жорданом (1838-1922); однако доказательство Жордана оказалось ошибочным. Удовлетворительное доказательство было предложено О.Вебленом (1880-1960) в 1905.
Теорема Брауэра о неподвижной точке. Пусть D - замкнутая область, состоящая из окружности и ее внутренности. Теорема Брауэра утверждает, что для любого непрерывного преобразования, переводящего каждую точку области D в точку этой же области, существует некоторая точка, которая остается неподвижной при этом преобразовании. (Преобразование не предполагается взаимно однозначным.) Теорема Брауэра о неподвижной точке представляет особый интерес потому, что она, по-видимому, является, наиболее часто используемой в других разделах математики топологической теоремой.
Проблема четырех красок. Проблема заключается в следующем: можно ли любую карту раскрасить в четыре цвета так, чтобы любые две страны, имеющие общую границу, были раскрашены в различные цвета. Проблема четырех красок топологическая, так как ни форма стран, ни конфигурация границ не имеют значения.
Гипотеза о том, что четырех красок достаточно для соответствующей раскраски любой карты, была впервые высказана в 1852. Опыт показал, что четырех красок действительно достаточно, но строгого математического доказательства не удавалось получить на протяжении более ста лет. И только в 1976 К.Аппель и В.Хакен из Иллинойского университета, затратив более 1000 часов компьютерного времени, добились успеха.
Односторонние поверхности. Простейшей односторонней поверхностью является лист Мёбиуса, названный так в честь А.Мёбиуса, открывшего его необычайные топологические свойства в 1858. Пусть ABCD (рис. 2,а) - прямоугольная полоска бумаги. Если склеить точку A с точкой B, а точку C с точкой D (рис. 2,б), то получится кольцо с внутренней поверхностью, наружной поверхностью и двумя краями. Одну сторону кольца (рис. 2,б) можно окрасить. Окрашенная поверхность будет ограничена краями кольца. Жук может совершить "кругосветное путешествие" по кольцу, оставаясь либо на окрашенной, либо на неокрашенной поверхности. Но если полоску перед склеиванием концов перекрутить на полоборота и склеить точку A с точкой C, а B с D, то получится лист Мёбиуса (рис. 2,в). У этой фигуры есть только одна поверхность и один край. Любая попытка окрасить только одну сторону листа Мёбиуса обречена на неудачу, так как у листа Мёбиуса всего одна сторона. Жук, ползущий по середине листа Мёбиуса (не пересекая края), вернется в исходную точку в положении "вверх ногами". При разрезании листа Мёбиуса по средней линии он не распадается на две части.
Узлы. Узел можно представлять себе как запутанный кусок тонкой веревки с соединенными концами, расположенный в пространстве. Простейший пример - из куска веревки сделать петлю, пропустить один из ее концов сквозь петлю и соединить концы. В результате мы получим замкнутую кривую, которая остается топологически той же самой, как бы ее ни растягивать или скручивать, не разрывая и не склеивая при этом отдельные точки. Проблема классификации узлов по системе топологических инвариантов пока не решена.

Wikipedia

Топология

Тополо́гия — раздел математики, который является разновидностью геометрии, посвященной изучению качественных свойств геометрических фигур, не зависящих от расстояний, величин углов, площадей и объёмов.

В отличие от геометрии, эквивалентными в топологии, по определению, считаются те фигуры, которые получаются друг из друга произвольной обратимой непрерывной деформацией. Такие деформации называются гомеоморфизмами. Например, сглаживая углы треугольника, его можно деформировать в круг, а затем, заостряя края круга, — в пятиугольник или любой другой выпуклый многоугольник, поэтому с точки зрения топологии все эти фигуры эквивалентны. Кроме того, кружка с ручкой и бублик гомеоморфны. Напротив, бублик и шар, а также кольцо и круг по некоторым причинам не гомеоморфны.

Первостепенной задачей топологии является задача классификации. Решение данной задачи требует топологических инвариантов, то есть таких характеристик пространства, которые сохраняются при гомеоморфизме. Изучение подобных характеристик послужило важным стимулом для развития топологии и восходит к открытию тождества Эйлера — соотношения между количествами вершин (В), рёбер (Р) и граней (Г) выпуклого многогранника: В {\displaystyle -} Р + {\displaystyle +} Г = 2 {\displaystyle =2} . Объяснение этого тождества с точки зрения топологии в том, что выражение слева от равенства является топологическим инвариантом, а все выпуклые многогранники гомеоморфны между собой (и гомеоморфны шару). Впоследствии тождество Эйлера позволило установить топологический инвариант совершенно произвольного топологического пространства — его эйлерову характеристику. В частности, этот инвариант позволяет отличить шар от бублика и круг от кольца.

Основными объектами исследования в топологии являются топологические пространства, которые в первом приближении представляют собой классы эквивалентности по описанному выше отношению (т. е. гомеоморфности) геометрических фигур и произвольных метрических пространств.

За счёт того, что основные понятия топологии не требуют для своего определения никаких классических геометрических понятий, эта теория применяется к объектам, далёким от геометрических, проникает практически во все области математики и допускает многочисленные приложения.

Examples of use of топология
1. Топология букв Существует несколько разновидностей письменности.
2. Топология пространства может меняться, и она может быть очень сложной.
3. В направлении "Борьба с терроризмом" записаны логика, топология, алгебра и математическая физика.
4. Математики придумали игры, в основе которых лежит наука топология, изучающая свойства фигур.
5. Существует такая наука - топология, которая как раз и занимается наиболее гармоничным наложением одних вещей на другие.
What is the English for топология? Translation of &#39топология&#39 to English